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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1824

USE OF AERODYNAMIC PARAMETERS FROM NONLINEAR THEORY IN

MODIFIED-STRIP-ANALYSIS FLUTTER CALCULATIONS FOR

FINITE-SPAN WINGS AT SUPERSONIC SPEEDS

By E. Carson Yates_ Jr._ and Robert M. Bennett

SUMMARY

The flutter characteristics for two untapered wings, one having 15 ° sweep

and aspect ratio 5.34, the other having 30 ° sweep and aspect ratio 4.16, have

been investigated analytically for Mach numbers up to 3.0. The calculations were

based on the modified-strip-analysis method of NACA Research Memorandum L57LIO

with the required aerodynamic parameters computed from linear theory, from shock-

expansion theory, and from Busemann second-order theory. The results were com-

pared with flutter experiments over the Mach number range. Supersonic flutter

speeds were satisfactorily predicted by the modified strip analysis employing

aerodynamic parameters computed from the nonlinear theories but were high when

supersonic linear theory was used. Flutter speeds calculated for subsonic Mach

numbers by use of linear-theory aerodynamic parameters were in good agreement

with experimental values.

INTRODUCTION

Difficulties in formulating and using rigorous aerodynamic theories for

unsteadyj three-dimensional, compressible flow have led to widespread use of

approximate methods for evaluating the oscillatory aerodynamic loads required

in flutter analyses. One of these approximate methods is the modified strip

analysis I presented in reference 1. This method, which is limited to relatively

lln this method, spanwise distributions of steady-flow section lift-curve

slope and local aerodynamic center for the undeformed wing are used in conjunction

with the "effective" angle-of-attack distribution resulting from the assumed

vibration modes in order to obtain values of section lift and pitching moment.

The steady-state aerodynamic parameters may be obtained from any suitable theory

or experiment, the criterion being that the best method to use is the one that

yields the most accurate steady-state load distributions. Circulation functions

modified on the basis of loadings for two-dimensional airfoils oscillating in com-

pressible flow are employed to account for the effects of oscillatory motion on

the magnitudes and phase angles of the lift and moment vectors. Some character-

istics of resulting oscillatory section lift and pitching moment are examined

briefly in the appendix of the present report.



low reduced frequencies, was applied in reference 1 to a numberof swept and
unswept wings for Machnumbers from zero to as high as 1.7_. The results showed
generally good agreement with experimental flutter data, thus indicating the use-
fulness of this comparatively simple procedure especially for trend-study and
preliminary-design information. It is quite obvious, however, that such an
approximate method is intended to supplement rather than to supplant the more
rigorous theoretical techniques.

The aerodynamic coefficients employed in all of the calculations of refer-
ence 1 were obtained from linearized aerodynamic theory. However, use of lin-
earized aerodynamic theory in the modified strip analysis may be expected to
yield less accurate flutter characteristics as Machnumber increases. Firstj it
is well known that for wings of finite thickness, llnearized aerodynamic theory
predicts pressure distributions and hence aerodynamic-center positions with
decreased accuracy at the higher supersonic Machnumbers. (See refs. 2 to _, for

example.) Furthermore, the results of reference 5 indicate that as Mach number

increases, the calculated flutter speed and frequency become more sensitive to

small changes in local aerodynamic-center position. It is thus apparent that the

calculation of accurate flutter characteristics at the higher supersonic Mach

numbers will require the use of aerodynamic parameters obtained from the more

accurate nonlinear aerodynamic theories or from experiments (ref. 6).

The primary objectives of the present report are to illustrate the use of

nonlinear aerodynamics in conjunction with the flutter-analysis method of refer-

ence 1 and to examine the accuracy of the resulting flutter characteristics. For

these purposes supersonic flutter characteristics have been calculated for two

untapered swept wings by the method of reference 1 with the required aerodynamic

coefficients obtained from linear theory, from Busemann second-order theory, and

from shock-expansion theory. The calculations cover Mach numbers up to 3.0 and

are compared with the experimental flutter data given in reference 7 for these

wings. The results of extensive supersonic flutter calculations for these wings

by piston theory and by quasi-steady second-order theory are presented in refer-
ence 8.

For completeness some calculations have been made for these two wings at

subsonic Mach numbers by the modified strip method of reference 1 using linear-

theory aerodynamic coefficients. The subsonic flutter characteristics of these

wings have also been investigated by use of the subsonic kernel function method

(results unpublished).

SYMBOLS

ac_ n

b s

nondlmensional distance from midchord to local aerodynamic center (for

steady flow at zero angle of attack) measured perpendicular to elastic

axis, positive rearward; fraction of semichord perpendicular to

elastic axis (called acn in ref. l)

semichord measured streamwise
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cm_, n

KL

KM

M

Mle

m

V

V

0

tD

dcl I

dc m

local lift-curve slope for a section perpendicular to elastic axis in

steady flow at zero angle of attack

derivative with respect to angle of attack of local pitching-moment

coefficient measured about leading edge of a section perpendicular

to the elastic axis in steady flow at zero angle of attack

ratio of .-(Cl_,n)2D calculated by nonlinear theory to -.(Cl_,n)2D

calcuiated by linear theory

ratio of (Cm%n)2D calculated by nonlinear theory to (Cm_,n)2D

calculated by linear theory

b_
reduced frequency, --

V

Mach number

Mach number component normal to leading edge

total mass of wing panel

flutter speed

volume of air within a cylinder having streamwise chord as base diameter

and panel span as height

distance measured from wing root along elastic axis, fraction of elastic

axis length

mass ratio for wing panel, m_
Ov

air density

circular frequency of vibration at flutter

circular frequency of kth natural (coupled) vibration mode

circular frequency of ith uncoupled bending vibration mode

circular frequency of first uncoupled torsional vibration mode

amplitude of the oscillatory section lift-curve slope

amplitude of the oscillatory section pitching-moment-curve slope,

pitching moment measured about pitch axis



8a phase angle between oscillatory section lift and pitch angle measured
from free-stream direction

e_m phase angle between oscillatory section pitching momentand pitch
angle measuredfrom free-stream direction

Subscripts:

2/9 two dimensional

3D three dimensional

DESCRIPTIONOFWINGS

General Description

The flutter calculations of this report were madefor two of the untapered,
swept wings for which experimental flutter data were given in reference 7. One
wing was swept back 15° and had an aspect ratio of 5.34; the other was swept back
30° and had an aspect ratio of 4.16. (See fig. i.) These wings were cut from
O.041-inch-thick aluminum or magnesiumsheet and had chords of 2 inches measured
perpendicular to the leading edge. As shownin figure i, the leadii_ and trailing
edges of both wings were beveled 1/4 inch to form a 2.05-percent-thick symmetrical
hexagonal airfoil section perpendicular to the leading edge. For these homogene-
ous untapered wings, both the elastic axis and the local centers of gravity were
taken to be at midchord.

In the investigations of reference 7_ two magnesiummodels and two aluminum
models of each planformwere flutter tested. Since flutter calculations are
presented herein for all of these models, they have been arbitrarily designated
as models A, B_ C, and D for convenient reference. (See table I.) Note specif-
ically that models A, B, and C are the sameas models A, B, and C of reference 8.

ModeShapesand Frequencies

Uncoupled beam-type vibration modeswere employed in all flutter calcula-
tions. Since the wings investigated herein were homogeneousand untapered, the
uncoupled modeshapes and frequencies for both planforms were considered to be
the sameas those for a uniform cantilever beam. The uncoupled bending-modeand
torsion-mode frequencies for 15° wing models A and C and for 30° wing models A
and C were calculated from the simple formulas for a uniform cantilever beam. To
allow for slight differences in stiffness between ostensibly identical models A
and B, the uncoupled-modefrequencies for model B were obtained from those for
model A by multiplying by the ratio of the measured first-natural-mode frequency
of model B to the corresponding frequency of model A. That is, for model B
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B( h,i)A
- A

and

Similarly, for model D

(col)D

and

The uncoupled-mode frequencies for all models are presented in table I. For each

model, the frequency of the second bending mode is close to that of the first

torsion mode, and both are near the measured second- and third-mode natural

(coupled) frequencies given in reference 7. (See also table I herein.)

The first three measured natural (coupled) mode shapes for these wings pre-

sented in reference 9 and the corresponding node lines (fig. i) indicate that the

second and third natural modes involve a high degree of bending-torsion coupling,

particularly for the 30o wing. In additionj the mode shapes show that some camber

occurs in some of the modes. Since the natural modes are not closely approxi-

mated by uncoupled modes, a question arises with regard to the suitability of

uncoupled modes for the flutter analyses. Reference i indicated that the modified

strip analysis could be formulated to employ coupled vibration modes; furthermore,

a camber mode could also be employed. These provisions, however, are not included

in the method as presently programed; therefore, a direct comparison of coupled-

mode and uncoupled-mode strip-theory calculations was not feasible. However,

little difference occurred between coupled-mode and uncoupled-mode subsonic

kernel-function calculations for these two wings (results unpublished).

In comparison, the flutter analyses for the swept wings of reference i0 also

indicated little difference between flutter speeds obtained from coupled natural-

mode and uncoupled beam-mode calculations by the subsonic kernel function method,

even though the natural modes for those wings contained considerably more camber

than the modes for the present wings. The results of both types of kernel-

function calculations as well as of modified-strip-theory calculations (with

uncoupled modes) were in good agreement with experiment (ref. I0).

Finally, it may be noted that even when uncoupled vibration modes are used

in the analyses of swept wings, some camber is included in the deflections along

streamwise sections. For uncoupled modes, wing sections normal to the elastic
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axis are assumed to oscillate without distortion. Therefore, if these sections

do not lie in the free-stream direction, some camber deformation of streamwise

sections appears.

FLUTTER CALCULATIONS

The modified-strip-analysis method employed herein is described in refer-

ence i. The procedure of this report differs from that of reference i only with

regard to the method of calculating the aerodynamic parameters cZ_,n and ac, n-

For the wings of this report, values of c_% n and ac, n were computed by three

methods for supersonic Mach numbers and two methods for subsonic Mach numbers as

indicated in table II.

In most of the flutter calculations by the modified-strip-analysis method,

three uncoupled vibration modes were used - first and second bending and first

torsion. However, the third bending mode was included in one calculation for

15 ° wing model B for comparison with the three-mode results.

Supersonic Speed Range

Linearized theory.- In the supersonic speed range, aerodynamic parameters

were calculated by the linearized lifting-surface method of reference Ii, since

the leading edges of both wing planforms were supersonic at all Mach numbers cal-

and for
culated. For the 15 ° wing, the required distributions of cZa, n ac, n

wing sections normal to the elastic axis were initially obtained from corre-

sponding values for streamwise sections by application of simple sweep theory as

described in reference i. Subsequently, the values of cZa, n and ac, n were

reevaluated by direct integration of lifting pressure along sections normal to

the elastic axis. Results of these two evaluations are compared in figure 2.

The close agreement at all Mach numbers was anticipated because the wing was

untapered and swept only 15 °. The small differences shown would be expected to

cause negligible change in the calculated flutter characteristics. The two pre-

ceding statements would not be valid, however, for a highly tapered wingwith

significantly greater sweepback, as was demonstrated in reference i0. The values

of cZ_,n and ac3 n obtained by use of simple sweep theory (fig. 2) were used

in the present flutter calculations for the 15 ° wing because they were available

earlier than values obtained by direct integration. For the 30o wing, however,

all calculations of cZ_,n and ac, n by supersonic linearized aerodynamic

theory (fig. 3) were made by direct integration of lifting pressure along sec-

tions perpendicular to the elastic axis.

Nonlinear theories.- No general theory is known to exist for evaluating the

nonlinear aerodynamic effects of finite wing thickness and airfoil shape on the

supersonic steady-flow aerodynamic loads on finite-span wings. For use in the

present flutter analyses, therefore, such nonlinear effects on the distributions
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of cl% n and ac, n are approximated by employing two-dimensional nonlinear

theory to modify the spanwise distributions of aerod_amic parameters calculated

from three-dimensional linearized theory. _proximations of this t_e were also

employed in references 12 and 13. Specifically herein, the values of section

lift-cu_e slope c_a,n obtained from three-dimensional linear theory were

multiplied by the ratio of cZ_,n obtained from two-dimensional nonlinear theory

to cZa, n obtained f_m two-dimensional linear theory; that is,

= KL(CZ% n)3D, linear
(i)

Similarly for the section pitching-moment slope C_,n,

f(Cn_, n )2D_ nonlinearl

(Cm%n)3D, nonlinear = L (cn_,n)2_D, linear j(Cm%n)3D, linear

= KM (cn_, n )3D, linear
(2)

and obtained from equations (i) and (2), the
Using values of cZ% n Cn_, n

local aerodynamic-center positions (ac, n)3D, nonlinear were calculated from

ac, n )3D_ nonlinear = 2

(Cm% n )3D, nonlinear

(cza, n )3D, nonlinear

- i

In all of these calculations, the two-dimensional aerodynamic parameters were

computed for wing sections normal to the elastic axis and for the Mach number

component normal to the leading edge. This Mach number component was chosen

because the nature of the pressure distribution over the wing is dominantly

affected by whether the leading edge is subsonic or supersonic. (See also

ref. i. )

(3)

The two nonlinear two-dimensional aerodynamic theories employed herein are

the complete shock-expansion theory as presented in reference 14, and the Busemann

second-order theory as used in references 12 and 13. Steady-state aerodynamic

load distributions calculated by shock-expansion theory for wings with sharp

leading edges have been shown to agree well with measured values at the higher

supersonic Mach numbers. (See ref. 15, for example.) Although the Busemann
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second-order theory lacks the theoretical exactness of the complete shock-

expansion theory_ the simplicity of application of the second-order theory would

make it attractive for use in flutter analyses if the results can be shown to be

sufficiently accurate.

The shock-expansion theory is directly applicable only to sharp-edge airfoils

at Mach numbers for which the leading-edge shock wave is attached. These limita-

tions did not affect the present applications to the 15° and 30 ° wings because

both were sharp edged and because the leading-edge bevel on both yielded wedge

angles small enough to permit shock attachment at relatively low supersonic Mach

numbers. For wings with round leading edges, however, the shock-expansion theory

as presented in reference 14 can be applied approximately by employing the arti-

fice of the sonic wedge tangent on the airfoil nose (ref. 16). Compared with

values obtained from two-dimensional linear theory, the values of Cm% n obtained

from shock-expansion theory are significantly altered in the present application

(KM _ 1.00); however, the cZ_,n values were_ only slightly affected,_ differing

in the present cases by less than 2 percent Ii.00 _ KL _ 1.02_. The airfoil sec-

tions normal to the leading edge were identical for the 15 ° and 30 ° wings so that

the same shock-expansion-theory calculations were applicable to both. The values

of (ac, n)2D, shock expansion were calculated from the following equation:

(_, n)2D, nonlinear
= - 1 (4)

(a%n)2D, nonlinear 2 (cZ_,n)2D, nonlinear

and are shown in figure 4. It can be seen that even for the present thin wings

(2.05 percent thick measured perpendicular to the leading edge)j the shock-

expansion theory yields aerodynamic-center positions significantly forward of

those indicated by linear theory ,((ac'n)2D, linear = 0)._ Distributions of

(ac, n)3D_shock expansion obtained from these values are compared with those

from linear-theory calculations in figures 2 and 3. Values of

cz _3D, shock are not shown in figures 2 and 3 because of their% n ! expansion

closeness to the linear-theory curves.

Unlike the shock-expansion theory, the Busemann second-order theory causes

no change at all from the linear-theory value of the lift-curve slope (K L _ 1.00)

and yields a change in Cm% n (KM< 1.00) that is a function only of Mach number

and airfoil cross-sectional area. Thus the problem of airfoil nose shape is not

directly encountered even though the theory is strictly applicable only to sharp-

nose sections. Values of (ac, n)2D, second order for the airfoil (normal to the

leading edge) of the present wings were calculated from equation (4) and are

shown in figure 4. The aerodynamic centers calculated by the Busemann second-

order theory are appreciably forward of the positions indicated by linear theory,

but are not as far forward as the positions obtained from the shock-expansion

theory. The values of (ac, n)2D obtained from Busemann second-order theory for
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an NACA 65A002 airfoil are also shown in figure 4 to illustrate the effect of

differing cross-sectional areas for two airfoils with approximately the same

maximum thickness.

Subsonic Speed Range

Flutter calculations for both the 15 ° and 30o wings at subsonic Mach numbers

fo!lo_ed the procedure outlined in reference i. In particular, the required dis-

tributions of cZ_n were computed by the lifting-line method of reference 17

and are shown in figures 2 and 3. Note specifically that this method implicitly

places the local aerodynamic centers along the streamwise quarter-chord line, so

that, for the present untapered wings_ ac, n = -1/2. The importance of this

restriction on local aerodynamic center and hence on section pitching moment, was

examined for the 15 ° wing. For this purpose_ some flutter calculations for this

wing employed distributions of cZ_n and a%n calculated by subsonic lifting-

surface theorv_ essentially that of reference 18. These values of cZ_n and

ac, n are compared with the values obtained from the lifting-line theory in fig-

ure 2. For all three subsonic Mach numbers 8_nd for all values of q, cZ_jn

obtained from lifting-surface theory is shown to be slightly higher than the cor-

responding values obtained from lifting-line theory. Moreover_ the aerodynamic-

tenter positions indicated by lifting-surface theory are farther forward than

those associated with lifting-line theory_ particularly near the wing tip. The

results of reference 5 indicate that both of these differences would be expected

to have depressing effects on the calculated flutter speeds when compared with

flutter speeds obtained by use of lifting-line theory.

RESULTS AND DISCUSSION

A summary of pertinent conditions for all the calculations and an index to

_he results are provided in table II. The flutter speeds and frequencies cal-

culated by the modified-strip analysis employing aerodynamic parameters obtained

From both linear and nonlinear aerodynamic theories are compared with experimental

_lutter data from reference 7 in figures 5 and 6 for the 15 ° wing and in fig-

_res 7 and 8 for the 30 ° wing. In the calculations of all the flutter speed and

_lutter frequency curves of figures 9 to 8, the wing properties and flow density

_mployed were those associated with the experimental flutter points shown. Since

_ach experimental point (from ref. 7) represents a different model and a different

lensity, the calculations for each model and density were limited to a range of

4ach number which bracketed the experimental value. The range of Mach number

_overed for each model is indicated in table II. Because of the discontinuous

_hange of mass ratio and modal frequencies at the extremities of these Mach num-

)er ranges, the calculated flutter characteristics also show discontinuities at

_hese locations.
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Supersonic Speed Range

Results of the flutter calculations which employed aerodynamic parameters

computed from linearized supersonlc-flow theory are included in figures 5 to 8.

Both the flutter speeds and frequencies calculated from these values of cZa, n

and ac, n are appreciably higher than experiment for the 15 ° wing all through

the supersonic range and for the 30 ° wing at the higher supersonic Mach numbers.

This observation is in agreement with the results of references 5 and 6 in which

supersonic linear theory characteristically predicted aerodynamic-center positions

that were too far rearward and these in turn characteristically yielded flutter

speeds that were too high. However, for the 30° wing the agreement of the cal-

culations with experiment at low supersonic Mach numbers is good. The larger

sweep angle of this wing decreases the Mach number component normal to the leading

edge and increases the portion of the wing area that is behind the Mach line from

the root leading edge. Hence, at a given low supersonic Mach number the local

aerodynamic centers for this wing are farther forward than those for the 15 ° wing

(for example, compare figs. 2(e) and 3(d)). The calculated flutter characteris-

tics for the 30 ° wing are therefore less sensitive to small variations in ac, n.

(See ref. 5-)

For both wings the differences between experimental flutter speeds and those

calculated from linear-theory aerodynamics progressively increase with increasing

supersonic Mach number. For these wings the elastic axes and local centers of

gravity were at midchord so that the aerodynamic centers could never move rear-

ward of them. Hence, no change of sign in the calculated section pitching moment

occurred as it did for the 45 ° swept wing of reference i0, and the accompanying

sharp upward break of calculated flutter speed with increasing Mach number

(ref. i0) was not encountered here. Nevertheless_ for the present moderately

swept wings the local aerodynamic centers did move rearward to the vicinity of

the elastic axis and the local centers of gravity even at relatively low super-

sonic Mach numbers. Under these conditions accurate flutter prediction by the

modified strip method even at moderately low supersonic speeds requires the aero-

dynamic centers to be located more accurately than is possible by use of linear-

ized aerodynamic theory.

The flutter calculations incorporating values of c_a, n and ac, n computed

from shock-expansion theory are also shown in figures 5 to 8. The agreement

between the calculated and experimental flutter speeds is good over the Mach num-

ber range. Thus, the more accurate determination of cZ_,n and especially ac, n

by shock-expansion theory yields considerable improvement in the calculated flut-

ter speeds.

Figures 5 to 8 also include flutter characteristics calculated for the 15 °

and 30 ° wings with ac, n values computed from Busemann second-order theory. Over
the Mach number range, the calculated flutter speeds are in fair agreement with

experimental values for the 15 ° wing. Corresponding results for the 30 ° wing

show good agreement with experiment. These calculated flutter speeds, however,

are higher than those calculated by using shock-expanslon theory as would be

expected (ref. 5) since the aerodynamic centers obtained from Busemann
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second-order theory (figs. 2 and 4) are rearward of the values given by shock-
expansion theory. The Busemannsecond-order-theory correction to the aerodynamic-
center position is a function only of the airfoil cross-sectlonal area and of two
Machnumberdependent coefficients which are given, for example, in equa-
tions (3-11), section E, of reference 19. As indicated previously, this theory
maybe applied more expediently than the shock-expansion theory, and hence maybe
preferable in cases for which someconservativeness maybe sacrificed for greater
simplicity in the calculations.

As stated previously, most of the present flutter calculations employed
three vibration modes(first torsion and first and secondbending). However, a
single calculation for the 15° wing at M = 2.0 (figs. 5 and 6) shows that
inclusion of the next mode(third bending) results in little change in the cal-
culated flutter characteristics.

For Machnumbersabove 1.65, the present results from the modified strip
analysis maybe comparedwith flutter calculations based on piston theory and on
quasi-steady second-order theory for the sametwo wings (ref. 8). In refer-
ence 8, best overall comparisons with experiment were obtained from the quasi-
steady second-order-theory calculations which included the effects of finite wing
thickness. For the 15° wing, the latter calculated flutter speeds are essentially
the same(within 3 percent) as those obtained herein with Busemannsecond-order
theory. For the 30° wing, however, the best results from reference 8 comparemore
closely (within 9 percent) with the present calculations which employed shock-
expansion theory.

Subsonic SpeedRange

The subsonic flutter speeds and frequencies calculated for the 15° and 30°
wings employing lifting-line aerodynamics are presented in figures 5 to 8, and
for the 15° wing using lifting-surface theory in figures 5 and 6. For all cases
the agreement of the calculated flutter speeds with experiment is good although
the calculated frequencies are somewhatlow. The flutter speeds computedfor
the 15° wing employing values of cZ_,n and ac, n calculated by lifting-surface

theory are somewhatlower than those obtained from values of cZ_,n and ac, n
computedby lifting-line theory. This result was expected since the local aero-
dynamic centers computedby lifting-surface theory are forward of those computed
by lifting-line theory, and values of c_,n computedby lifting-surface theory
are larger than those computedby lifting-line theory. (See figs. 2(a), (b)3
and (c).)

The good agreement between the measured subsonic and supersonic flutter

speeds and those calculated by the modified strip analysis (figs. 5 and 7) is of

added interest in view of the high degree of bending-torsion coupling that appears

in the natural vibration modes for both the 15 ° and 30 ° wings (refs. 7 and 9)-

It appears that for these wings the accuracy of the modifled-strip-analysis cal-

culations, which employed uncoupled vibration modes, was not adversely affected

by this pronounced coupling.
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CONCLUSIONS

The flutter characteristics of two untapered swept wings have been inves-
tigated analytically for Machnumbersup to 3.0. The calculations were madeby
a modified-strip-analysis method, employing aerodynamic parameters obtained from
both linear and nonlinear aerodynamic theories. Results of the analyses and com-
parisons with experimental flutter data for these wings indicate the following
conclusions:

i. The modified-strip-analysis method employing aerodynamic parameters
obtained from shock-expansion theory_ which includes the effects of airfoil shape3
yields flutter speeds that are in good agreementwith experimental values over
the supersonic Machnumberrange. In comparison, the use of aerodynamic param-
eters calculated by the simpler Busemannsecond-order theory gives slightly higher
calculated flutter speeds. Flutter speeds from both calculations, howeverj are
in muchbetter agreementwith experiment than those obtained by use of linearized
aerodynamic theory even at the lower Machnumbers.

2. Subsonic flutter speeds calculated for these wings by the modified-strip-
analysis method with aerodynamic parameters obtained from linearized theory are
in good agreementwith single experimental flutter points at Machnumbers
near 0.5.

Langley Research Center_
National Aeronautics and Space Administration 3

Langley Station, Hsmpton, Va., April 22, 1963.
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APPENDIX

COMPARISONSOFOSCILLATORYAERODYNAMICLOADDISTRIBUTIONSCALCULATED

BY THEMODIFIEDSTRIPMETHODANDBY LINEARIZED

SUPERSONICOSCILLATINGWINGTHEORY

Reference 20 has shownthat large spanwise variations in the amplitudes and
phase angles of section lift and pitching momentmayoccur near the tip of an
oscillating wing at supersonic speeds. These results have led to questions with
regard to the ability of the modified strip method to represent adequately the
distributions of oscillatory aerodynamic loading over the portion of a supersonic
wing which is influenced by a cut-off tip. In order to examine this question 3
values of oscillatory section lift and pitching momentcalculated by this modified
strip method have been comparedwith corresponding values obtained from supersonic
oscillatory lifting-surface theory (ref. 20). Expressions for the load distribu-
tion on a rectangular wing oscillating as a rigid body in supersonic flow were
presented in reference 20 and illustrated by calculations of the amplitudes and
phase angles of the section lift and pitching momentfor a wing of aspect
ratio 4.0 oscillating in pitch at Machnumber1.3 (figs. 5 and 6 of ref. 20).
Calculations of the loading for these conditions have also been madeby the modi-
fied strip method employed in the flutter calculations of the present report.
Since the loading expressions of reference 20 were based on linearized-flow
theory_ the steady-flow aerodynamic parameters employed in the comparative
modified-strip-analysis calculations were also obtained from linear theory - that
of reference Ii. (See fig. 34(d) of ref. i.)

The distributions of oscillatory aerodynamic parameters calculated by the
modified strip method and those from reference 20 (fig. 9 herein) showthe same
general trends and magnitudes for both the amplitudes and the phase angles of
the section lift and pitching moment. The amplitudes of the oscillatory section
lift-curve slope calculated by the two methods are essentially identical, and the
corresponding phase angles differ by less than 6° . With regard to the pitching-
momentcurves, however_ it should be observed that the present combination of
Machnumber (1.30) and pitch axis (41.3 percent chord) constitute a somewhat
sensitive condition for the modified-strip-theory calculation. Under these con-
ditions the local aerodynamic centers are rather close to the pitch axis over
muchof the span and are actually behind the pitch axis over the inboard three-
fourths of the span. The momentarms and hence the pitching momentsare there-
fore relatively small, and the errors resulting from the approximations inherent
in the modified strip methodbecomeapparent in both the amplitude and phase
angle of the pitching moment. Thus, the pitching-moment phase angles ec_n
(fig. 9(b)) indicated by the two calculations are very close together over the
outboard portion of the wing, but somedifferences appear inboard. Over the
inboard region, both calculations yield values of Cam near 180° so that the
corresponding quadrature componentsof the pitching moment(components in phase
with the angular velocity) are shownby both methods to be relatively small com-
pared to the componentsin phase with the angular displacement. However, the
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inboard phase angles from the modified strip method are greater than 180 °,

whereas those from reference 20 are less than 180 °. Thus, over the inboard

region, the quadrature moment components from reference 20 would have positive

sign and hence would contribute to instability, whereas those from the modified

strip method would have negative sign and hence would contribute to stability.

In a case such as this, use of the modified strip method in a flutter analysis

would probably yield flutter speeds higher than corresponding values obtained by

the method of reference 20. References i and ii, as well as the present report,

call attention to the errors in calculated flutter speeds which may occur under

such circumstances. If the pitch axis in the present calculation were farther

from the local aerodynamic centers, the comparison of pitching moments (fig. 9(b))

should be improved. The comparison should also be better at lower reduced

frequencies. (See ref. I.)
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